Principia Metaphysica

References

Principia Metaphysica builds upon established physics and mathematics. This page provides links to the foundational papers, textbooks, and resources that underpin the framework.

Version Note: Version 6.0 used Calabi-Yau 4-fold (CY4) compactifications via F-theory. Version 6.1+ uses G₂ manifold compactifications via M-theory. The dimensional flow is now: 26D (bosonic string) → 13D (half dimensions) → 7D (G₂ compactification) → 6D (heterogeneous brane) → 4D (observed).

Foundational Physics

Die Feldgleichungen der Gravitation (The Field Equations of Gravitation)
Einstein, A.
Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1915), pp. 844-847
Einstein Field Equations Gravity
Die Grundlagen der Physik (The Foundations of Physics)
Hilbert, D.
Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen (1915)
Einstein-Hilbert Action Variational Principle
Gravitation
Misner, C.W., Thorne, K.S., Wheeler, J.A.
W.H. Freeman (1973) ISBN: 978-0716703440
Textbook Differential Geometry

Quantum Field Theory

The Quantum Theory of the Electron
Dirac, P.A.M.
Proceedings of the Royal Society A, 117 (778): 610-624 (1928)
Dirac Equation Spinors
Conservation of Isotopic Spin and Isotopic Gauge Invariance
Yang, C.N., Mills, R.L.
Physical Review 96 (1): 191-195 (1954)
Yang-Mills Theory Non-Abelian Gauge Theory
An Introduction to Quantum Field Theory
Peskin, M.E., Schroeder, D.V.
Westview Press (1995) ISBN: 978-0201503975
Textbook QFT

Geometry & Topology

G₂ Manifolds

Compact Manifolds with Special Holonomy
Joyce, D.D.
Oxford Mathematical Monographs (2000) ISBN: 978-0198506010
Definitive text on G₂ geometry. Covers construction methods, deformation theory, and moduli spaces of G₂ manifolds. Essential for understanding the geometric foundation of PM v6.1+ compactifications.
G₂ Holonomy Special Geometry
Metrics with Exceptional Holonomy
Bryant, R.L.
Annals of Mathematics, Vol. 126, No. 3, pp. 525-576 (1987)
First construction of complete metrics with G₂ holonomy. Proved existence of G₂ manifolds and provided explicit local examples.
G₂ Holonomy Riemannian Geometry
Twisted connected sums and special Riemannian holonomy
Kovalev, A.
Journal of Reine und Angewandte Mathematik, Vol. 565, pp. 125-160 (2003)
Twisted connected sum construction for G₂ manifolds. Provides systematic method for building compact G₂ spaces from Calabi-Yau building blocks.
G₂ Construction Compact Manifolds

Calabi-Yau Manifolds (Historical)

Note: CY4 manifolds were used in Principia Metaphysica v6.0 via F-theory. Current framework (v6.1+) uses G₂ manifolds. These references are retained for historical context and pedagogical value.

Calabi's Conjecture and Some New Results in Algebraic Geometry
Yau, S.T.
Proceedings of the National Academy of Sciences 74 (5): 1798-1799 (1977)
Calabi-Yau Ricci-flat

Mathematical Structures

Applications of Grassmann's Extensive Algebra
Clifford, W.K.
American Journal of Mathematics 1 (4): 350-358 (1878)
Clifford Algebra Gamma Matrices
Geometry, Topology and Physics
Nakahara, M.
CRC Press, 2nd Edition (2003) ISBN: 978-0750306065
Textbook Fiber Bundles
The Index of Elliptic Operators on Compact Manifolds
Atiyah, M.F., Singer, I.M.
Bulletin of the American Mathematical Society 69 (3): 422-433 (1963)
Index Theorem Topology

String Theory & M-Theory

Bosonic String Theory

Note: Principia Metaphysica uses bosonic string theory (26D) for initial dimensional embedding, then transitions to M-theory on G₂ for compactification.

M-Theory on G₂ Manifolds

M Theory, Joyce Orbifolds and Super Yang-Mills
Acharya, B.S.
Advances in Theoretical and Mathematical Physics 3: 227-248 (1998)
M-theory compactifications on G₂ manifolds. Shows how ADE singularities yield SO(10) and other gauge groups. Foundation for PM's gauge structure from geometry.
M-Theory G₂ Compactification
M-Theory Dynamics On A Manifold Of G₂ Holonomy
Atiyah, M.F., Witten, E.
Advances in Theoretical and Mathematical Physics 6: 1-106 (2001)
Comprehensive study of M-theory on G₂ manifolds. Membrane instantons, chiral fermions, and connection to 4D effective field theory. Key reference for PM's dimensional reduction.
M-Theory 4D Effective Theory

String Compactifications (Historical)

Vacuum Configurations for Superstrings
Candelas, P., Horowitz, G., Strominger, A., Witten, E.
Nuclear Physics B 258: 46-74 (1985)
String Compactification CY3
Evidence for F-Theory
Vafa, C.
Nuclear Physics B 469 (3): 403-415 (1996)
Note: F-theory references (CY4) retained for comparison. PM v6.0 used F-theory; v6.1+ uses M-theory on G₂.
F-Theory CY4
F-theory GUTs
Beasley, C., Heckman, J.J., Vafa, C.
Journal of High Energy Physics 2009 (01): 058 (2009)
F-Theory GUTs Local Models

Extra Dimensions, Kaluza-Klein Theory & Warped Geometry

Zum Unitatsproblem der Physik (On the Unification Problem of Physics)
Kaluza, T.
Sitzungsberichte der Preussischen Akademie der Wissenschaften (1921), pp. 966-972
Kaluza-Klein 5D Unification
Quantentheorie und funfdimensionale Relativitatstheorie
Klein, O.
Zeitschrift fur Physik 37 (12): 895-906 (1926)
Compactification Charge Quantization
Kaluza-Klein Gravity
Overduin, J.M., Wesson, P.S.
Physics Reports 283 (5-6): 303-378 (1997)
Comprehensive review of Kaluza-Klein theory and higher-dimensional gravity. Foundation for understanding dimensional reduction and the KK tower of states in PM.
Review Higher Dimensions

Warped Geometry

Large Mass Hierarchy from a Small Extra Dimension
Randall, L., Sundrum, R.
Physical Review Letters 83, 3370-3373 (1999)
Randall-Sundrum I: Warped geometry solution to hierarchy problem. Shows how exponential warp factor generates large mass hierarchies from geometry. Relevant for PM's multi-scale structure.
Warped Geometry Hierarchy Problem
An Alternative to Compactification
Randall, L., Sundrum, R.
Physical Review Letters 83, 4690-4693 (1999)
Randall-Sundrum II: Non-compact extra dimensions with gravity localization on brane. Demonstrates how 4D gravity emerges from higher dimensions without compactification.
Gravity Localization Brane Worlds

Heterogeneous Branes

Localizing Gravity on a String-Like Defect in Six Dimensions
Gherghetta, T., Shaposhnikov, M.
Physical Review Letters 85, 240-243 (2000)
Codimension-2 branes in six dimensions. String-like defects with deficit angles and gravity localization. Key mechanism for PM's 7D → 6D → 4D reduction via heterogeneous brane.
Codimension-2 Branes Deficit Angles

Grand Unified Theories (GUTs)

Unity of All Elementary-Particle Forces
Georgi, H., Glashow, S.L.
Physical Review Letters 32 (8): 438-441 (1974)
SU(5) GUT
Unified Interactions of Leptons and Hadrons
Fritzsch, H., Minkowski, P.
Annals of Physics 93 (1-2): 193-266 (1975)
SO(10) Spinor Representation
Grand Unified Theories and Proton Decay
Langacker, P.
Physics Reports 72 (4): 185-385 (1981)
Review Proton Decay

Phenomenology & Experiment

KK Graviton Searches

Search for new resonances in mass distributions of jet pairs using 139 fb⁻¹ of pp collisions at √s = 13 TeV with the ATLAS detector
ATLAS Collaboration
Journal of High Energy Physics 2019, 145 (2019)
Current experimental bounds on KK graviton masses: M_KK > 3.5 TeV at 95% CL. Sets constraints on compactification scale in extra-dimensional models.
LHC KK Gravitons
Warped Gravitons at the CERN LHC and Beyond
Agashe, K., Davoudiasl, H., Perez, G., Soni, A.
Physical Review D 76, 036006 (2007)
Phenomenology of Kaluza-Klein gravitons at colliders. Discusses production mechanisms, decay channels, and experimental signatures of KK gravitons in warped extra dimensions.
Collider Phenomenology Warped Gravitons

Proton Decay

Search for proton decay via p → e⁺π⁰ and p → μ⁺π⁰ in 0.31 megaton-years exposure of the Super-Kamiokande water Cherenkov detector
Super-Kamiokande Collaboration
Physical Review D 95, 012004 (2017)
Current best limits on proton lifetime: τ(p → e⁺π⁰) > 1.6 × 10³⁴ years. Critical constraint on GUT-scale physics.
Proton Decay Super-Kamiokande

Gravitational Waves

Laser Interferometer Space Antenna
LISA Consortium
ESA Mission Proposal (2017)
Future space-based gravitational wave detector. Will probe mHz frequencies sensitive to cosmic strings, phase transitions, and extra-dimensional signatures.
Gravitational Waves LISA

Thermal Time & Statistical Mechanics

Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation
Connes, A., Rovelli, C.
Classical and Quantum Gravity 11 (12): 2899-2917 (1994)
Thermal Time Hypothesis Modular Theory
On Canonical Forms of von Neumann Algebras
Tomita, M.
Fifth Functional Analysis Symposium, Tohoku University (1967)
Modular Automorphisms
Statistical Mechanics of Quantum Spin Systems
Kubo, R., Martin, P.C., Schwinger, J.
Journal of Mathematical Physics (1957-1959)
KMS Condition Thermal Equilibrium

Cosmology & Dark Energy

DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations
DESI Collaboration
arXiv:2404.03002 (2024)
Dark Energy w(z) Evolution
Planck 2018 Results. VI. Cosmological Parameters
Planck Collaboration
Astronomy & Astrophysics 641: A6 (2020)
CMB Cosmological Parameters
FRW Cosmology in F(R,T) Gravity
Myrzakulov, R.
European Physical Journal C 72: 2203 (2012)
F(R,T) Gravity Modified Gravity

Neutrino Physics

Neutrino Mass and Spontaneous Parity Nonconservation
Minkowski, P.; Yanagida, T.; Gell-Mann, M., Ramond, P., Slansky, R.; Mohapatra, R.N., Senjanovic, G.
Various (1977-1980)
Seesaw Mechanism Neutrino Mass
Review of Particle Physics
Particle Data Group
Physical Review D 110, 030001 (2024)
Particle Properties Experimental Data

Lorentz Violation & Standard Model Extension

Lorentz-Violating Extension of the Standard Model
Colladay, D., Kostelecky, V.A.
Physical Review D 58 (11): 116002 (1998)
SME CPT Violation
Data Tables for Lorentz and CPT Violation
Kostelecky, V.A., Russell, N.
Reviews of Modern Physics 83: 11-31 (2011), updated annually
Experimental Bounds